Conditional limiting distribution of beta-independent random vectors
Enkelejd Hashorva
Journal of Multivariate Analysis, 2008, vol. 99, issue 7, 1438-1459
Abstract:
The paper deals with random vectors in , possessing the stochastic representation , where R is a positive random radius independent of the random vector and is a non-singular matrix. If is uniformly distributed on the unit sphere of , then for any integer m =0, such that W2 is a beta distributed random variable with parameters m/2,(d-m)/2 and (U1,...,Um),(Um+1,...,Ud) are independent uniformly distributed on the unit spheres of and , respectively. Assuming a more general stochastic representation for in this paper we introduce the class of beta-independent random vectors. For this new class we derive several conditional limiting results assuming that R has a distribution function in the max-domain of attraction of a univariate extreme value distribution function. We provide two applications concerning the Kotz approximation of the conditional distributions and the tail asymptotic behaviour of beta-independent bivariate random vectors.
Keywords: primary; 60F05 secondary; 60G70 Beta-independent random vectors Elliptical distributions Kotz Type I polar distributions Kotz approximation Conditional limiting distribution Estimation of conditional survivor function Max-domain of attractions (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00129-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:7:p:1438-1459
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().