Estimation of value at risk for copper
Konstantinos Gkillas,
Christoforos Konstantatos,
Spyros Papathanasiou and
Mark Wohar
Journal of Commodity Markets, 2023, vol. 32, issue C
Abstract:
We analyze various types of models for Value at Risk (VaR) forecasts for daily copper returns. The period of the analysis is from January 4, 2000 to January 14, 2021 including 5290 daily closing prices. The models considered are GARCH-type models, the Generalized Autoregressive Score model, the Dynamic Quantile Regression model, and the Conditional Autoregressive Value at Risk model specifications. The best model is selected using the Model Confidence Set approach. This approach provides a superior set of models by testing the null hypothesis of equal predictive ability. The findings suggest that the EGARCH model outperforms the rest of the models for the copper commodity under investigation.
Keywords: Commodities market; Copper; VaR forecasts; GARCH-Type models; CAViaR; DQR; JEL; Classification: C46; C58; G15; F31 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2405851323000417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jocoma:v:32:y:2023:i:c:s2405851323000417
DOI: 10.1016/j.jcomm.2023.100351
Access Statistics for this article
Journal of Commodity Markets is currently edited by Marcel Prokopczuk, Betty Simkins and Sjur Westgaard
More articles in Journal of Commodity Markets from Elsevier
Bibliographic data for series maintained by Catherine Liu ().