Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations
Pan Wu,
Lunhui Xu,
Lingshu Zhong,
Kun Gao,
Xiaobo Qu and
Mingyang Pei
Journal of Transport Geography, 2022, vol. 104, issue C
Abstract:
Buses and metros are two main public transit modes, and these modes are crucial components of sustainable transportation systems. Promoting reciprocal integration between bus and metro systems requires a deep understanding of the effects of multiple factors on transfers among integrated public transportation transfer modes, i.e., metro-to-bus and bus-to-metro. This study aims to reveal the determinants of the transfer ratio between bus and metro systems and quantify the associated impacts. The transfer ratio between buses and metros is identified based on large-scale transaction data from automated fare collection systems. Meanwhile, various influencing factors, including weather, socioeconomic, the intensity of business activities, and built environment factors, are obtained from multivariate sources. A multivariate regression model is used to investigate the associations between the transfer ratio and multiple factors. The results show that the transfer ratio of the two modes significantly increases under high temperature, strong wind, rainfall, and low visibility. The morning peak hours attract a transfer ratio of up to 57.95%, and the average hourly transfer volume is 0.94 to 1.38 times higher at this time than in other periods. The intensity of business activities has the most significant impact on the transfer ratio, which is approximately 1.5 to 15 times that of the other independent variables. Moreover, an adaptative geographically weighted regression is utilized to investigate the spatial divergences of the influences of critical factors on the transfer ratio. The results indicate that the impact of a factor presents spatial heterogeneity and even shows opposite effects (in terms of positive and negative) on the transfer ratio in different urban contexts. For example, among the related socioeconomic variables, the impact of the housing price on the downtown transfer ratio is larger than that in the suburbs. Crowd density positively influences the transfer ratio at most stations in the northern region, whereas it shows negative results in the southern region. These findings provide valuable insights for public transportation management and promote the effective integration of bus and metro systems to provide enhanced transfer services.
Keywords: Public transit; Transfer ratio; Spatial variations; Geographically weighted regression; Smartcard data; Multiple weather effects (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0966692322001387
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jotrge:v:104:y:2022:i:c:s0966692322001387
DOI: 10.1016/j.jtrangeo.2022.103415
Access Statistics for this article
Journal of Transport Geography is currently edited by Frank Witlox
More articles in Journal of Transport Geography from Elsevier
Bibliographic data for series maintained by Catherine Liu ().