EconPapers    
Economics at your fingertips  
 

Circuity in China's high-speed-rail network

Xinlei Hu, Jie Huang and Feng Shi

Journal of Transport Geography, 2019, vol. 80, issue C

Abstract: This study investigates the circuity of China's high-speed-rail (HSR) network from 2014 to 2016 and analyzes the network performance. The concept of circuity has been redefined in terms of travel time so that various speed levels of HSR lines can be measured systematically. In this study, circuity is redefined as the ratio of actual travel time to ideal travel time. By using actual HSR trip records, the influence of passenger demand and the circuity of transfer trips have been examined. At the node level, we find that the circuity of principal stations has significantly decreased overall. For stations with lower circuity, transfer trips from/to them tend to be more circuitous. Although stations along the intercity rail lines show higher circuity, they contribute to regional coverage and connectivity. Finally, we find that circuity tends to increase with a decreasing passenger flow for OD pairs within a certain distance range, and the passenger flow may decline as the OD distance increases.

Keywords: Circuity; High-speed-rail network; Network performance; Transfer trips; Passenger demand; China (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096669231930095X

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jotrge:v:80:y:2019:i:c:s096669231930095x

DOI: 10.1016/j.jtrangeo.2019.102504

Access Statistics for this article

Journal of Transport Geography is currently edited by Frank Witlox

More articles in Journal of Transport Geography from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jotrge:v:80:y:2019:i:c:s096669231930095x