EconPapers    
Economics at your fingertips  
 

Adoptable approaches to predictive maintenance in mining industry: An overview

Oluwatobi Dayo-Olupona, Bekir Genc, Turgay Celik and Samson Bada

Resources Policy, 2023, vol. 86, issue PA

Abstract: The mining industry contributes to the expansion of the global economy by generating vital commodities. For continuous production, the industry relies significantly on machinery and equipment, which, as a result of greater modernization, are becoming increasingly complex, with a variety of systems and subsystems. However, maintaining the machinery and equipment used in the mining industry can be complex and costly. To improve the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies for equipment maintenance and to determine the best maintenance strategies, a systematic literature review was conducted to summarise the current state of research on equipment-related predictive maintenance (RP) in the mining industry. The review provides an overview of maintenance practices in the mining sector and examines PdM methodologies and processes used in other industries that may be applicable to the mining industry. In addition, this study discusses the different PdM architectures, processes, phases, and models (statistical and ML-based) used in creating a PdM plan. Furthermore, the review explores potential implementation directions for the PdM in the mining industry and highlights the challenges.

Keywords: Artificial intelligence; Fault diagnosis and prognosis; Machine learning; Predictive maintenance; Mineral and mining industry (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301420723010024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jrpoli:v:86:y:2023:i:pa:s0301420723010024

DOI: 10.1016/j.resourpol.2023.104291

Access Statistics for this article

Resources Policy is currently edited by R. G. Eggert

More articles in Resources Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jrpoli:v:86:y:2023:i:pa:s0301420723010024