Optimization of the parameters of surfaces by interpolating variational bicubic splines
A. Kouibia and
M. Pasadas
Mathematics and Computers in Simulation (MATCOM), 2014, vol. 102, issue C, 76-89
Abstract:
In this paper we present an interpolation method from a surface or a data set by the optimization of a quadratic functional in a bicubic splines functional space. The existence and the uniqueness of the solution of this problem are shown and as well a convergence result of the method is established. The mentioned functional involves some real non negative parameters; the optimal surface is obtained by a suitable optimization of these parameters. Finally, we analyze some numerical and graphic examples in order to prove the efficiency of the presented method.
Keywords: Optimization; Variational method; Interpolation; Bicubic; Splines (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413002267
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:102:y:2014:i:c:p:76-89
DOI: 10.1016/j.matcom.2013.09.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().