A path-independent approach to integrated variance under the CEV model
Hengxu Wang,
O’Hara, John G. and
Nick Constantinou
Mathematics and Computers in Simulation (MATCOM), 2015, vol. 109, issue C, 130-152
Abstract:
In this paper, a closed form path-independent approximation of the fair variance strike for a variance swap under the constant elasticity of variance (CEV) model is obtained by applying the small disturbance asymptotic expansion. The realized variance is sampled continuously in a risk-neutral market environment. With the application of a Brownian bridge, we derive a theorem for the conditionally expected product of a Brownian motion at two different times for arbitrary powers. This theorem enables us to provide a conditional Monte-Carlo scheme for simulating the fair variance strike. Compared with results in the recent literature, the method outlined in our paper leads to a simplified approach for pricing variance swaps. The method may also be applied to other more sophisticated volatility derivatives. An empirical comparison of this model with the Heston model and a conditional Monte Carlo scheme is also presented using option data on the S&P 500.
Keywords: CEV process; Realized variance; Small disturbance asymptotic expansion; Brownian bridge; Conditional Monte-Carlo simulation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414002377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:109:y:2015:i:c:p:130-152
DOI: 10.1016/j.matcom.2014.09.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().