Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays
R. Sriraman,
Yang Cao and
R. Samidurai
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 171, issue C, 103-118
Abstract:
This paper studies the global asymptotic stability problem for a class of stochastic complex-valued neural networks (SCVNNs) with probabilistic time-varying delays as well as stochastic disturbances. Based on the Lyapunov–Krasovskii functional (LKF) method and mathematical analytic techniques, delay-dependent stability criteria are derived by separating complex-valued neural networks (CVNNs) into real and imaginary parts. Furthermore, the obtained sufficient conditions are presented in terms of simplified linear matrix inequalities (LMIs), which can be straightforwardly solved by Matlab. Finally, two simulation examples are provided to show the effectiveness and advantages of the proposed results.
Keywords: Global asymptotic stability; Complex-valued neural networks; Stochastic disturbance; Lyapunov–Krasovskii functional; Probabilistic time-varying delays (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419301120
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:171:y:2020:i:c:p:103-118
DOI: 10.1016/j.matcom.2019.04.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().