EconPapers    
Economics at your fingertips  
 

Long time numerical behaviors of fractional pantograph equations

Dongfang Li and Chengjian Zhang

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 172, issue C, 244-257

Abstract: This paper is concerned with long time numerical behaviors of nonlinear fractional pantograph equations. The L1 method with the linear interpolation procedure is applied to solve these nonlinear problems. It is proved that the proposed numerical scheme can inherit the long time behavior of the underlying problems without any stepsize restrictions. After that, the fast evaluation is presented to speed up the calculation of the Caputo fractional derivative. Numerical examples are shown to confirm the theoretical results. Besides, several counter-examples are also given to show that not all the numerical methods can inherit the long time behavior of the underlying problems.

Keywords: Long time behavior; Stability; Fractional pantograph equations; Fast algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303507
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:172:y:2020:i:c:p:244-257

DOI: 10.1016/j.matcom.2019.12.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:172:y:2020:i:c:p:244-257