A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression
K. Parand,
A.A. Aghaei,
M. Jani and
A. Ghodsi
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 180, issue C, 114-128
Abstract:
In this paper, we develop a machine learning method with the Least Squares Support Vector Regression (LS-SVR) for the numerical solution of Fredholm integral equations. Two different approaches are proposed for training the network by using the shifted Legendre kernel, the collocation and Galerkin LS-SVR approaches. As with the standard LS-SVR for known dataset regression, the formulation of the method gives rise to an optimization problem. An equivalent system of algebraic equations is then derived and in linear cases discussed in terms of the sparsity of the matrices and computational efficiency. Finally, the method is carried out on some numerical examples, including nonlinear and multidimensional cases to show the accuracy and efficiency of the method.
Keywords: Least squares support vector machines; Orthogonal kernel; Fredholm integral equation; Galerkin LS-SVR; Collocation LS-SVR (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420302809
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:180:y:2021:i:c:p:114-128
DOI: 10.1016/j.matcom.2020.08.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().