Deep learning-based forecasting of aggregated CSP production
Jorge Segarra-Tamarit,
Emilio Pérez,
Eric Moya,
Pablo Ayuso and
Hector Beltran
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 184, issue C, 306-318
Abstract:
This paper introduces deep learning-based forecasting models for the continuous prediction of the aggregated production generated by CSP plants in Spain. These models use as inputs the expected top of atmosphere irradiance values and available weather conditions forecasts for the locations where the main CSP power plants are installed. The performances of the forecast models are analysed and compared by means of the most extended metrics in the literature for a whole year of CSP energy production.
Keywords: Concentrated solar power; Deep learning; Neural networks; Forecasting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542030046X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:184:y:2021:i:c:p:306-318
DOI: 10.1016/j.matcom.2020.02.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().