Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems
Theodore E. Simos,
Vasilios N. Katsikis,
Spyridon D. Mourtas and
Predrag S. Stanimirović
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 202, issue C, 164-180
Abstract:
In the context of infinite-horizon optimal control problems, the algebraic Riccati equations (ARE) arise when the stability of linear time-varying (LTV) systems is investigated. Using the zeroing neural network (ZNN) approach to solve the time-varying eigendecomposition-based ARE (TVE-ARE) problem, the ZNN model (ZNNTVE-ARE) for solving the TVE-ARE problem is introduced as a result of this research. Since the eigendecomposition approach is employed, the ZNNTVE-ARE model is designed to produce only the unique nonnegative definite solution of the time-varying ARE (TV-ARE) problem. It is worth mentioning that this model follows the principles of the ZNN method, which converges exponentially with time to a theoretical time-varying solution. The ZNNTVE-ARE model can also produce the eigenvector solution of the continuous-time Lyapunov equation (CLE) since the Lyapunov equation is a particular case of ARE. Moreover, this paper introduces a hybrid ZNN model for stabilizing LTV systems in which the ZNNTVE-ARE model is employed to solve the continuous-time ARE (CARE) related to the optimal control law. Experiments show that the ZNNTVE-ARE and HFTZNN-LTVSS models are both effective, and that the HFTZNN-LTVSS model always provides slightly better asymptotic stability than the models from which it is derived.
Keywords: Algebraic Riccati equations; Zeroing neural network; Eigendecomposition; Linear time-varying systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422002452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:202:y:2022:i:c:p:164-180
DOI: 10.1016/j.matcom.2022.05.033
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().