Homotopy perturbation method for strongly nonlinear oscillators
Ji-Huan He,
Man-Li Jiao,
Khaled A. Gepreel and
Yasir Khan
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 204, issue C, 243-258
Abstract:
This paper reveals the effectiveness of the homotopy perturbation method for strongly nonlinear oscillators. A generalized Duffing oscillator is adopted to elucidate the solving process step by step, and a nonlinear frequency–amplitude relationship is obtained with a relative error of 0.91% when the amplitude tends to infinity, the solution morphology is also discussed, and the zero-th approximate solution is enough for conservative nonlinear oscillators, while the accuracy of the frequency can be improved if the iteration continues.
Keywords: Cubic–quintic nonlinear oscillators; Homotopy perturbation method; Periodic solution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:204:y:2023:i:c:p:243-258
DOI: 10.1016/j.matcom.2022.08.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().