EconPapers    
Economics at your fingertips  
 

Multiple bifurcations in a predator–prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting

Zuchong Shang and Yuanhua Qiao

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 205, issue C, 745-764

Abstract: In this paper, a modified Leslie-type predator–prey model with simplified Holling type IV functional response is established, in which double Allee effect on prey and nonlinear prey harvesting are considered. The analysis of the model shows that there exists a Bogdanov–Takens singularity (focus case) of codimension 4, and also multiple other nonhyperbolic and degenerate equilibria. Bifurcations are explored and it is found that transcritical bifurcation, saddle–node bifurcation, Bogdanov–Takens bifurcation of codimension 2, degenerate cusp type Bogdanov–Takens bifurcation of codimension 3, and degenerate focus type Bogdanov–Takens bifurcation of codimension 4 occur as parameters vary. The bifurcations result in complex dynamic behaviors, such as double limit cycle, triple limit cycle, quadruple limit cycle, cuspidal loop, (multiple) homoclinic loop, saddle–node loop, and limit cycle(s) simultaneously with homoclinic loop. We run numerical simulations to verify the theoretical results, and it is found that the system admits bistability, tristability, or even tetrastability.

Keywords: Predator–prey model; Double Allee effect; Nonlinear harvesting; Degenerate focus type Bogdanov–Takens bifurcation of codimension 4 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422004426
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:205:y:2023:i:c:p:745-764

DOI: 10.1016/j.matcom.2022.10.028

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:745-764