On the Mandelbrot set of zp+logct via the Mann and Picard–Mann iterations
Muhammad Tanveer,
Waqas Nazeer and
Krzysztof Gdawiec
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 209, issue C, 184-204
Abstract:
Since its introduction, the Mandelbrot set has been studied and generalized in various directions. Some authors generalized it by using iterations from fixed point theory, whereas others characterized it by using different complex functions or polynomials. In this paper, we replace the constant c in the classical zp+c function with logct, where t∈R and t≥1. Moreover, we prove escape criteria for the Mann and Picard–Mann iterations in which we use the modified function. Then, we present graphical and numerical examples showing the behaviour of the generated sets depending on the parameters of the iterations and the parameter t. Using the proposed approach, we can generate a great variety of fascinating fractal patterns, and when t∈N the sets form rosette patterns.
Keywords: Mandelbrot set; Escape criterion; Mann iteration; Picard–Mann iteration; Rosette patterns (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542300085X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:209:y:2023:i:c:p:184-204
DOI: 10.1016/j.matcom.2023.02.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().