EconPapers    
Economics at your fingertips  
 

RBF-based partition of unity methods for two-dimensional time-dependent PDEs: Numerical and theoretical aspects

Banafsheh Raeisi, Mojtaba Fardi and Mohammadreza Ahmadi Darani

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 226, issue C, 152-171

Abstract: This article discusses standard Radial Basis Function (RBF) partition of unity method and an enhanced version known as the direct RBF partition of unity method. We introduce the framework of these methods for the effective and accurate numerical analysis of certain two-dimensional time-dependent Partial Differential Equations (PDEs). Additionally, we conduct a convergence analysis of these methods and establish error bounds for local approximations. These error bounds are determined based on conditions associated with the eigenvalues of the Laplacian operator matrices generated by the proposed methods. To validate the accuracy and reliability of these approaches, we provide several numerical examples. We assess the consistency between theoretical and numerical results. The localized techniques introduced in this research demonstrate a significant reduction in computational cost and algorithmic complexity, achieved through the direct local procedure. Despite this computational advantage, both versions of the RBF partition of unity method exhibit a similar level of accuracy. Finally, we conduct a comparative analysis between the RBF partition of unity local methods and the RBF-generated finite differences method, offering valuable insights into the strengths and limitations of each approach.

Keywords: Time-dependent equations; Standard partition of unity; Direct partition of unity; Error estimate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424002520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:226:y:2024:i:c:p:152-171

DOI: 10.1016/j.matcom.2024.07.001

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:152-171