Symbolic-numerical computation of the stability regions for Jameson's schemes
V.G. Ganzha and
E.V. Vorozhtsov
Mathematics and Computers in Simulation (MATCOM), 1996, vol. 42, issue 4, 607-615
Abstract:
We describe a symbolic-numerical method for the Fourier stability analyses of difference initial-value problems approximating the initial-value problems for hyperbolic or parabolic PDEs. The Fourier method is reduced to the algebra of the resultants. We further use the REDUCE computer algebra system for the symbolic computation of the resultant and for the generation of a FORTRAN function to compute the value of the resultant. Basing on this FORTRAN function we further construct a binary function to characterize the stability and instability points. Using this function we generate a bilevel digital picture, and the stability region boundaries are then detected in this picture with the aid of the efficient algorithm proposed previously by Pavlidis (1982). The above symbolic-numerical method has enabled us to obtain for the first time the stability regions of the considered Jameson's schemes as applied to the two-dimensional advection-diffusion equation. Analytical formulas are proposed for the approximation of the boundaries of the obtained stability regions. It is shown that these formulas underestimate insignificantly the actual sizes of the stability regions. Therefore, these formulas can efficiently be used in practical computations by Jameson's schemes.
Keywords: Partial differential equations; Difference schemes; Stability; Symbolic-numerical computation (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475496000377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:42:y:1996:i:4:p:607-615
DOI: 10.1016/S0378-4754(96)00037-7
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().