EconPapers    
Economics at your fingertips  
 

Minimal involutive bases

Vladimir P. Gerdt and Yuri A. Blinkov

Mathematics and Computers in Simulation (MATCOM), 1998, vol. 45, issue 5, 543-560

Abstract: In this paper, we present an algorithm for construction of minimal involutive polynomial bases which are Gröbner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and multiplicative reductions. Every specific involutive division generates a particular form of involutive computational procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables. We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much like the reduced Gröbner basis.

Keywords: Computer algebra; Polynomial ideals; Gröbner bases; Involutive monomial division; Minimal involutive bases; Involutive algorithm (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475497001286
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:45:y:1998:i:5:p:543-560

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:45:y:1998:i:5:p:543-560