Smoothing data with correlated noise via Fourier transform
Umberto Amato and
Italia De Feis
Mathematics and Computers in Simulation (MATCOM), 2000, vol. 52, issue 3, 175-196
Abstract:
The problem of smoothing data trough a transform in the Fourier domain is analyzed in the case of correlated noise affecting data. A regularization method and two GCV-type criteria are resorted in order to solve the problem, in analogy with the case of uncorrelated noise. All convergence theorems stated for uncorrelated noise are here generalized to the case of correlated noise. Numerical experiments on significant test functions are shown.
Keywords: Fourier domain; GCV-type criteria; Uncorrelated noise (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475400001476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:52:y:2000:i:3:p:175-196
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().