Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation
Prabir Daripa and
Ranjan K. Dash
Mathematics and Computers in Simulation (MATCOM), 2001, vol. 55, issue 4, 393-405
Abstract:
We study the singularly perturbed (sixth-order) Boussinesq equation recently introduced by Daripa and Hua [Appl. Math. Comput. 101 (1999) 159]. This equation describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number less than but very close to 1/3. On the basis of far-field analyses and heuristic arguments, we show that the traveling wave solutions of this equation are weakly non-local solitary waves characterized by small amplitude fast oscillations in the far-field. Using various analytical and numerical methods originally devised to obtain this type of weakly non-local solitary wave solutions of the singularly perturbed (fifth-order) KdV equation, we obtain weakly non-local solitary wave solutions of the singularly perturbed (sixth-order) Boussinesq equation and provide estimates of the amplitude of oscillations which persist in the far-field.
Keywords: Capillary-gravity waves; Singularly perturbed Boussinesq equation; Weakly non-local solitary waves; Asymptotics beyond all orders; Pseudospectral method (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475400002883
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:55:y:2001:i:4:p:393-405
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().