EconPapers    
Economics at your fingertips  
 

A family of fourth-order difference schemes on rotated grid for two-dimensional convection–diffusion equation

Jun Zhang, Jules Kouatchou and Lixin Ge

Mathematics and Computers in Simulation (MATCOM), 2002, vol. 59, issue 5, 413-429

Abstract: We derive a family of fourth-order finite difference schemes on the rotated grid for the two-dimensional convection–diffusion equation with variable coefficients. In the case of constant convection coefficients, we present an analytic bound on the spectral radius of the line Jacobi’s iteration matrix in terms of the cell Reynolds numbers. Our analysis and numerical experiments show that the proposed schemes are stable and produce highly accurate solutions. Classical iterative methods with these schemes are convergent with large values of the convection coefficients. We also compare the fourth-order schemes with the nine point scheme obtained from the second-order central difference scheme after one step of cyclic reduction.

Keywords: Convection–diffusion equation; Rotated grid; Fourth-order difference schemes (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475401004189
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:59:y:2002:i:5:p:413-429

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:59:y:2002:i:5:p:413-429