Sum-discrepancy test on pseudorandom number generators
Makoto Matsumoto and
Takuji Nishimura
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 62, issue 3, 431-442
Abstract:
We introduce a non-empirical test on pseudorandom number generators (prng), named sum-discrepancy test. We compute the distribution of the sum of consecutive m outputs of a prng to be tested, under the assumption that the initial state is uniformly randomly chosen. We measure its discrepancy from the ideal distribution, and then estimate the sample size which is necessary to reject the generator. These tests are effective to detect the structure of the outputs of multiple recursive generators with small coefficients, in particular that of lagged Fibonacci generators such as random() in BSD-C library, as well as add-with-carry and subtract-with-borrow generators like RCARRY. The tests show that these generators will be rejected if the sample size is of order 106.
Keywords: Random number generation; Statistical test; Fourier transform (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475402002276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:62:y:2003:i:3:p:431-442
DOI: 10.1016/S0378-4754(02)00227-6
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().