A comparison between (quasi-)Monte Carlo and cubature rule based methods for solving high-dimensional integration problems
Rudolf Schürer
Mathematics and Computers in Simulation (MATCOM), 2003, vol. 62, issue 3, 509-517
Abstract:
Algorithms for estimating the integral over hyper-rectangular regions are discussed. Solving this problem in high dimensions is usually considered a domain of Monte Carlo and quasi-Monte Carlo methods, because their power degrades little with increasing dimension. These algorithms are compared to integration routines based on interpolatory cubature rules, which are usually only used in low dimensions. Adaptive as well as non-adaptive algorithms based on a variety of rules result in a wide range of different integration routines. Empirical tests performed with Genz’s test function package show that cubature rule based algorithms can provide more accurate results than quasi-Monte Carlo routines for dimensions up to s=100.
Keywords: Numerical integration; Monte Carlo; Quasi-Monte Carlo; Cubature rule (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475402002501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:62:y:2003:i:3:p:509-517
DOI: 10.1016/S0378-4754(02)00250-1
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().