Approximate solution of linear ordinary differential equations with variable coefficients
Xian-Fang Li
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 75, issue 3, 113-125
Abstract:
In this paper, a novel, simple yet efficient method is proposed to approximately solve linear ordinary differential equations (ODEs). Emphasis is put on second-order linear ODEs with variable coefficients. First, the ODE to be solved is transformed to either a Volterra integral equation or a Fredholm integral equation, depending on whether initial or boundary conditions are given. Then using Taylor’s expansion, two different approaches based on differentiation and integration methods are employed to reduce the resulting integral equations to a system of linear equations for the unknown and its derivatives. By solving the system, approximate solutions are determined. Moreover, an n th-order approximation is exact for a polynomial of degree less than or equal to n. This method can readily be implemented by symbolic computation. Illustrative examples are given to demonstrate the efficiency and high accuracy of the proposed method.
Keywords: Approximate solution; Taylor’s expansion; Ordinary differential equations; Variable coefficient (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406002412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:75:y:2007:i:3:p:113-125
DOI: 10.1016/j.matcom.2006.09.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().