Refinement based on longest-edge and self-similar four-triangle partitions
Miguel A. Padrón,
José P. Suárez and
Ángel Plaza
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 75, issue 5, 251-262
Abstract:
The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. One of these schemes is the four-triangle longest-edge (4T-LE) partition. Moreover, the four triangle self-similar (4T-SS) partition of an acute triangle yields four sub-triangles similar to the original one.
Keywords: Mesh quality; Uniform refinement; Longest-edge based algorithms (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406003399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:75:y:2007:i:5:p:251-262
DOI: 10.1016/j.matcom.2006.12.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().