On discrete maximum principles for nonlinear elliptic problems
János Karátson,
Sergey Korotov and
Michal Křížek
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 76, issue 1, 99-108
Abstract:
In order to have reliable numerical simulations it is very important to preserve basic qualitative properties of solutions of mathematical models by computed approximations. For scalar second-order elliptic equations, one of such properties is the maximum principle. In our work, we give a short review of the most important results devoted to discrete counterparts of the maximum principle (called discrete maximum principles, DMPs), mainly in the framework of the finite element method, and also present our own recent results on DMPs for a class of second-order nonlinear elliptic problems with mixed boundary conditions.
Keywords: Nonlinear elliptic problem; Mixed boundary conditions; Discrete maximum principle; Finite element method; Quadratures (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540700016X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:76:y:2007:i:1:p:99-108
DOI: 10.1016/j.matcom.2007.01.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().