EconPapers    
Economics at your fingertips  
 

Numerical simulation of Richtmyer–Meshkov instability driven by imploding shocks

J.G. Zheng, T.S. Lee and S.H. Winoto

Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 3, 749-762

Abstract: In this paper, the classical piecewise parabolic method (PPM) is generalized to compressible two-fluid flows, and is applied to simulate Richtmyer–Meshkov instability (RMI) induced by imploding shocks. We use the compressible Euler equations together with an advection equation for volume fraction of one fluid component as model system, which is valid for both pure fluid and two-component mixture. The Lagrangian-remapping version of PPM is employed to solve the governing equations with dimensional-splitting technique incorporated for multi-dimensional implementation, and the scheme proves to be non-oscillatory near material interfaces. We simulate RMI driven by imploding shocks, examining cases of single-mode and random-mode perturbations on the interfaces and comparing results of this instability in planar and cylindrical geometries. Effects of perturbation amplitude and shock strength are also studied.

Keywords: Piecewise parabolic method; Richtmyer–Meshkov instability; Imploding shock (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:3:p:749-762

DOI: 10.1016/j.matcom.2008.05.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2008:i:3:p:749-762