EconPapers    
Economics at your fingertips  
 

Recent advances in 2+1-dimensional simulations of the pattern-forming Kuramoto–Sivashinsky equation

Peter Blomgren, Antonio Palacios and Scott Gasner

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 6, 1810-1823

Abstract: We present an overview of recent advances in numerical simulations of the 2+1-dimensional Kuramoto–Sivashinsky equation, describing the flame-front deformation in a combustion experiment. Algorithmic development includes a second-order unconditionally A-stable Crank–Nicolson scheme, using distributed approximating functionals (DAFs) for well-tempered, highly accurate, representation of the physical quantity and its derivatives. The simulator reproduces a multitude of patterns observed in experiments-in-the-wild, including rotating 2-cell, 3-cell, hopping 3-cell, stationary 2, 3, 4, 5-cell, stationary 5/1, 6/1, 7/1, 8/2 two-ring patterns, etc. The numerical observation of hopping flame patterns – characterized by non-uniform rotations of a ring of cells, in which individual cells make abrupt changes in their angular positions while they rotate around the ring – is the first outside of physical experiments. We show modal decomposition analysis of the simulated patterns, via the singular value decomposition (SVD), which exposes the spatio-temporal behavior in which the overall temporal dynamics is similar to that of equivalent experimental states. Symmetry-based arguments are used to derive normal form equations for the temporal behavior, and a bifurcation analysis of the associated normal form equations quantifies the complexity of hopping patterns. Conditions for their existence and their stability are also derived from the bifurcation analysis. Further, we study the effects of thermal noise in a stochastic formulation of the Kuramoto–Sivashinsky equation. Numerical integration reveals that the presence of noise increases the propensity of dynamic cellular states, which seems to explain the generic behavior of related laboratory experiments. Most importantly, we also report on observations of certain dynamic states, homoclinic intermittent states, previously only observed in physical experiments.

Keywords: Cellular flames; Distributed approximating functionals; Kuramoto–Sivashinsky equation; Mode decomposition; Spatio-temporal pattern formation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408003200
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:6:p:1810-1823

DOI: 10.1016/j.matcom.2008.10.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:6:p:1810-1823