EconPapers    
Economics at your fingertips  
 

Instability in supercritical nonlinear wave equations: Theoretical results and symplectic integration

Slim Ibrahim and Philippe Guyenne

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 1, 2-9

Abstract: Nonlinear wave evolutions involve a dynamical balance between linear dispersive spreading of the waves and nonlinear self-interaction of the waves. In sub-critical settings, the dispersive spreading is stronger and therefore solutions are expected to exist globally in time. We show that in the supercritical case, the nonlinear self-interaction of the waves is much stronger. This leads to some sort of instability of the waves. The proofs are based on the construction of high frequency approximate solutions. Preliminary numerical simulations that support these theoretical results are also reported.

Keywords: Nonlinear wave equations; Supercritical equations; Ill-posedness (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:1:p:2-9

DOI: 10.1016/j.matcom.2009.06.023

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2009:i:1:p:2-9