Stochastic utility theorem
Pavlo R. Blavatskyy
Journal of Mathematical Economics, 2008, vol. 44, issue 11, 1049-1056
Abstract:
This paper analyzes individual decision making. It is assumed that an individual does not have a preference relation on the set of lotteries. Instead, the primitive of choice is a choice probability that captures the likelihood of one lottery being chosen over the other. Choice probabilities have a stochastic utility representation if they can be written as a non-decreasing function of the difference in expected utilities of the lotteries. Choice probabilities admit a stochastic utility representation if and only if they are complete, strongly transitive, continuous, independent of common consequences and interchangeable. Axioms of stochastic utility are consistent with systematic violations of betweenness and a common ratio effect but not with a common consequence effect. Special cases of stochastic utility include the Fechner model of random errors, Luce choice model and a tremble model of [Harless, D., Camerer, C., 1994. The predictive utility of generalized expected utility theories. Econometrica 62, 1251-1289].
Keywords: Expected; utility; theory; Stochastic; utility; Fechner; model; Luce; choice; model; Tremble (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4068(07)00136-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:44:y:2008:i:11:p:1049-1056
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().