Self-isolation
Dominique Baril-Tremblay,
Chantal Marlats and
Lucie Ménager
Journal of Mathematical Economics, 2021, vol. 93, issue C
Abstract:
We analyze the spread of an infectious disease in a population when individuals strategically choose how much time to interact with others. Individuals are either of the severe type or of the asymptomatic type. Only severe types have symptoms when they are infected, and the asymptomatic types can be contagious without knowing it. In the absence of any symptoms, individuals do not know their type and continuously tradeoff the costs and benefits of self-isolation on the basis of their belief of being the severe type. We show that all equilibria of the game involve social interaction, and we characterize the unique equilibrium in which individuals partially self-isolate at each date. We calibrate our model to the COVID-19 pandemic and simulate the dynamics of the epidemic to illustrate the impact of some public policies.
Keywords: SIR model; Self-isolation; COVID-19 epidemic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406821000215
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:93:y:2021:i:c:s0304406821000215
DOI: 10.1016/j.jmateco.2021.102483
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().