EconPapers    
Economics at your fingertips  
 

Simple collective equilibria in stopping games

P. Jean-Jacques Herings and Arkadi Predtetchinski

Journal of Mathematical Economics, 2021, vol. 95, issue C

Abstract: At each moment in time, an alternative from a finite set is selected by a stochastic process. Players observe the selected alternative and sequentially cast a yes or a no vote. If the set of players casting a yes vote is decisive for the selected alternative, it is accepted and the game ends. Otherwise the next period begins. We refer to this class of problems as stopping games. Collective choice games, quitting games, and coalition formation games are particular examples. When the core of a stopping game is non-empty, a subgame perfect equilibrium in pure stationary strategies is shown to exist. But in general, even subgame perfect equilibria in mixed stationary strategies may not exist. We show that aggregate voting behavior can be summarized by a collective strategy. We insist on pure strategies, allow for simple forms of punishment, and provide a constructive proof to show that so-called two-step simple collective equilibria always exist. This implies the existence of a pure strategy subgame perfect equilibrium. We apply our approach to the case with three alternatives exhibiting a Condorcet cycle and to a model of redistributive politics.

Keywords: Voting; Collective choice; Coalition formation; Subgame perfect equilibrium; Stationary equilibrium (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406820301440
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:95:y:2021:i:c:s0304406820301440

DOI: 10.1016/j.jmateco.2020.102467

Access Statistics for this article

Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii

More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-08
Handle: RePEc:eee:mateco:v:95:y:2021:i:c:s0304406820301440