Learning, parameter drift, and the credibility revolution
Christopher A. Hennessy and
Dmitry Livdan
Journal of Monetary Economics, 2021, vol. 117, issue C, 395-417
Abstract:
This paper analyses extrapolation and inference using tax experiments in dynamic economies when shock processes are latent regime-shifting Markov chains. Belief revisions result in severe parameter drift: Response signs and magnitudes vary widely over time despite ideal exogeneity. Even with linear causal effects, shock responses are non-linear, preventing direct extrapolation. Analytical formulae are derived for extrapolating responses or inferring causal parameters. Extrapolation and inference hinges upon shock histories and correct assumptions regarding potential data generating processes. A martingale condition is necessary and sufficient for shock responses to directly recover comparative statics, but stochastic monotonicity is insufficient for correct sign inference.
Keywords: Natural experiment; Causality; Uncertainty; Learning (search for similar items in EconPapers)
JEL-codes: E62 E63 G18 G28 G38 H00 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304393220300180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:moneco:v:117:y:2021:i:c:p:395-417
DOI: 10.1016/j.jmoneco.2020.02.003
Access Statistics for this article
Journal of Monetary Economics is currently edited by R. G. King and C. I. Plosser
More articles in Journal of Monetary Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().