EconPapers    
Economics at your fingertips  
 

Spatial correlations in nonequilibrium systems: The effect of diffusion

Magdaleno Medina-Noyola and Joel Keizer

Physica A: Statistical Mechanics and its Applications, 1981, vol. 107, issue 3, 437-463

Abstract: We show how the ideas of the fluctuation-dissipation theory can be used to calculate spatial correlations in interacting systems away from equilibrium. The only spatially dependent dissipative process considered is diffusion, and spatial correlations are generated by the nonlocal spatial dependence of the chemical potential. The results are the lowest order in a hierarchy of generalized hydrodynamic type calculations applicable to nonequilibrium systems. We derive equations for the density correlation functions at stationary state supported by diffusive fluxes and show that they have the local equilibrium form. The static correlation function is obtained from the fluctuation-dissipation theorem, which we show to be equivalent to the Ornstein-Zernike integral equation. At equilibrium we demonstrate that the dynamical structure factor obtained by these methods includes the expected wave-vector dependent diffusion constant. Finally we derive a necessary and sufficient condition for local equilibrium to obtain at a stationary state and show by explicit calculation that chemical processes can give rise to significant nonequilibrium correlations.

Date: 1981
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437181901813
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:107:y:1981:i:3:p:437-463

DOI: 10.1016/0378-4371(81)90181-3

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:107:y:1981:i:3:p:437-463