Dynamic behaviours of 2∞ attractor and q-phase transitions at bifurcations in logistic map
P. Philominathan and
S. Rajasekar
Physica A: Statistical Mechanics and its Applications, 1996, vol. 229, issue 2, 244-254
Abstract:
Dynamic behaviours of the 2∞ attractor at the accumulation of period doubling in the logistic map are studied by the sum of the local expansion rates Sn(x1) of nearby orbits. The variance 〈[Sn(x)]2〉 and algebraic exponent ßn(x1) = Sn(x1)/ln(n) exhibits self-similar structures. The critical bifurcations such as intermittency, band merging and crisis-sudden widening of the chaotic attractor are studied in terms of a q-weighted average Λ(q), (− ∞ < q < ∞) of the coarse-grained local expansion rates Λ of nearby orbitals.
Keywords: Logistic map; Bifurcations; Local expansion rates and q-phase transitions (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437196000143
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:229:y:1996:i:2:p:244-254
DOI: 10.1016/0378-4371(96)00014-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().