A short account of a connection of power laws to the information entropy
Yaniv Dover
Physica A: Statistical Mechanics and its Applications, 2004, vol. 334, issue 3, 591-599
Abstract:
We use the formalism of “maximum principle of Shannon's entropy” to derive the general power law distribution function, using what seems to be a reasonable physical assumption, namely, the demand of a constant mean “internal order” (Boltzmann entropy) of a complex, self-interacting, self-organized system.
Keywords: Power laws; Information theory; Statistical physics; Dynamical systems; Self-organizing systems (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103008690
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:334:y:2004:i:3:p:591-599
DOI: 10.1016/j.physa.2003.09.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().