Signal and noise in financial correlation matrices
Zdzisław Burda and
Jerzy Jurkiewicz
Physica A: Statistical Mechanics and its Applications, 2004, vol. 344, issue 1, 67-72
Abstract:
Using Random Matrix Theory one can derive exact relations between the eigenvalue spectrum of the covariance matrix and the eigenvalue spectrum of its estimator (experimentally measured correlation matrix). These relations will be used to analyze a particular case of the correlations in financial series and to show that contrary to earlier claims, correlations can be measured also in the “random” part of the spectrum. Implications for the portfolio optimization are briefly discussed.
Keywords: Random matrix theory; Correlation matrix; Eigenvalue spectrum (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104009082
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:344:y:2004:i:1:p:67-72
DOI: 10.1016/j.physa.2004.06.089
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().