EconPapers    
Economics at your fingertips  
 

The Toda lattice is super-integrable

Maria A. Agrotis, Pantelis A. Damianou and Christodoulos Sophocleous

Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 1, 235-243

Abstract: We prove that the classical, non-periodic Toda lattice is super-integrable. In other words, we show that it possesses 2N-1 independent constants of motion, where N is the number of degrees of freedom. The main ingredient of the proof is the use of some special action-angle coordinates introduced by Moser to solve the equations of motion.

Keywords: Toda lattice; Super-integrable systems; Poisson brackets (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106000392
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:1:p:235-243

DOI: 10.1016/j.physa.2006.01.001

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:365:y:2006:i:1:p:235-243