Nearest-neighbour spacing distributions of the β-Hermite ensemble of random matrices
G. Le Caër,
C. Male and
R. Delannay
Physica A: Statistical Mechanics and its Applications, 2007, vol. 383, issue 2, 190-208
Abstract:
The evolution with β of the distributions of the spacing ‘s’ between nearest-neighbour levels of unfolded spectra of random matrices from the β-Hermite ensemble (β-HE) is investigated by Monte Carlo simulations. The random matrices from the β-HE are real symmetric and tridiagonal where β, which can take any positive value, is the reciprocal of the temperature in the classical electrostatic interpretation of eigenvalues. The distribution of eigenvalues coincide with those of the three classical Gaussian ensembles for β=1, 2, 4. The use of the β-HE ensemble results in an incomparable speed up and efficiency of numerical simulations of all spectral characteristics of large random matrices. Generalized gamma distributions are shown to be excellent approximations of the nearest-neighbor spacing (NNS) distributions for any β while being still simple. They account both for the level repulsion in ∼sβ when s→0 and for the whole shape of the NNS distributions in the range of ‘s’ which is accessible to experiment or to most numerical simulations. The exact NNS distribution of the GOE (β=1) is in particular significantly better described by a generalized gamma distribution than it is by the Wigner surmise while the best generalized gamma approximation coincides essentially with the Wigner surmise for β>∼2. They describe too the evolution of the level repulsion between that of a Poisson distribution and that of a GOE distribution when β increases from 0 to 1. The distribution of ln(s), related to the electrostatic interaction energy between neighbouring charges, is accordingly well approximated by a generalized Gumbel distribution for any β⩾0. The distributions of the minimum NN spacing between eigenvalues of matrices from the β-HE, obtained both from as-calculated eigenvalues and from unfolded eigenvalues are Brody distributions which are classically used to characterize the spectral fluctuations of various physical systems.
Keywords: Random matrix theory; Nearest-neighbour spacing; Wigner surmise (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107004190
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:383:y:2007:i:2:p:190-208
DOI: 10.1016/j.physa.2007.04.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().