Cascading failures on weighted urban traffic equilibrium networks
JunJie Wu,
H.J. Sun and
Z.Y. Gao
Physica A: Statistical Mechanics and its Applications, 2007, vol. 386, issue 1, 407-413
Abstract:
In this paper, we study the cascading failure on weighted urban traffic equilibrium networks by introducing a more practical flow assignment mechanism. The whole process including edges overloading to node malfunctioning, dynamic spanning clustering and the phase transitions trigged with O–D flow evolving is simulated. It is found that there are three districts: slow, fast and stationary (collapse for scale-free networks) cascading failure districts. And different topologies have large effects on the ranges of these districts. Simulations also show that, although the latter can support larger traffic flow, homogeneous networks appear to be more robust against cascading failures than heterogeneous ones.
Keywords: Cascading failures; Equilibrium networks; Dynamics (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107009363
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:386:y:2007:i:1:p:407-413
DOI: 10.1016/j.physa.2007.08.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().