Biologically-inspired stochastic vector matching for noise-robust information processing
Michihito Ueda,
Masahiro Ueda,
Hiroaki Takagi,
Masayuki J. Sato,
Toshio Yanagida,
Ichiro Yamashita and
Kentaro Setsune
Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issue 16, 4475-4481
Abstract:
“End of Moore’s Law” has recently become a topic. Keeping the signal-to-noise ratio (SNR) at the same level in the future will surely increase the energy density of smaller-sized transistors. Lowering the operating voltage will prevent this, but the SNR would inevitably degrade. Meanwhile, biological systems such as cells and brains possess robustness against noise in their information processing in spite of the strong influence of stochastic thermal noise. Inspired by the information processing of organisms, we propose a stochastic computing model to acquire information from noisy signals. Our model is based on vector matching, in which the similarities between the input vector carrying external noisy signals and the reference vectors prepared in advance as memorized templates are evaluated in a stochastic manner. This model exhibited robustness against the noise strength and its performance was improved by addition of noise with an appropriate strength, which is similar to a phenomenon observed in stochastic resonance. Because the stochastic vector matching we propose here has robustness against noise, it is a candidate for noisy information processing that is driven by stochastically-operating devices with low energy consumption in future. Moreover, the stochastic vector matching may be applied to memory-based information processing like that of the brain.
Keywords: Stochastic computing; Noise-robust; Vector matching; Biological system; Similarity (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437108002537
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:387:y:2008:i:16:p:4475-4481
DOI: 10.1016/j.physa.2008.02.077
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().