Unveiling the connectivity structure of financial networks via high-frequency analysis
Donatello Materassi and
Giacomo Innocenti
Physica A: Statistical Mechanics and its Applications, 2009, vol. 388, issue 18, 3866-3878
Abstract:
The paper deals with the problem of reconstructing the internal link structure of a network of agents subject to mutual dependencies. We show that standard multivariate approaches based on a correlation analysis are not well suited to detect mutual influences and dependencies, especially in the presence of delayed or propagative relations and when the sampling rate is sufficiently high to capture them. In particular, we develop and apply a metric based on the coherence function to take into account these dynamical phenomena. The effectiveness of the proposed approach is illustrated through numerical examples and through the analysis of a real complex networked system, i.e. a set of 100 high volume stocks of the New York Stock Exchange, observed during March 2008 and sampled at high frequency.
Keywords: Econophysics; Multivariate analysis; Topology identification; Stock market analysis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437109004324
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:388:y:2009:i:18:p:3866-3878
DOI: 10.1016/j.physa.2009.06.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().