Spring pendulum: Parametric excitation vs an external force
M. Gitterman
Physica A: Statistical Mechanics and its Applications, 2010, vol. 389, issue 16, 3101-3108
Abstract:
The method of multiple scales is applied to obtain an approximate solution to the nonlinear dynamic equations describing a spring pendulum with the vertical oscillations of the suspension point up to and including the fourth order corrections. The solutions of these equations, where an external force enters the equations multiplicatively, are compared with the solution considered earlier, for the behavior of a spring pendulum subject to an external force, which enters the appropriate equations additively. It turns out that in lower orders in small parameter, the two solutions coincide for the case where the external force and viscous damping force are equally small, but they differ when the damping is much smaller than the external force.
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110002098
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:16:p:3101-3108
DOI: 10.1016/j.physa.2010.03.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().