Mean-square displacement of a stochastic oscillator: Linear vs quadratic noise
M. Gitterman
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 11, 3033-3042
Abstract:
Using the Langevin equations, we calculated the stationary second-order moment (mean-square displacement) of a stochastic harmonic oscillator subject to an additive random force (Brownian motion in a parabolic potential) and to different types of multiplicative noise (random frequency or random damping or random mass). The latter case describes Brownian motion with adhesion, where the particles of the surrounding medium may adhere to the oscillator for some random time after the collision. Since the mass of the Brownian particle is positive, one has to use quadratic (positive) noise. For all types of multiplicative noise considered, replacing linear noise by quadratic noise leads to an increase in stability.
Keywords: Stochastic oscillator; Additive and multiplicative linear and quadratic random forces; Stationary second moment (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000477
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:11:p:3033-3042
DOI: 10.1016/j.physa.2012.01.021
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().