EconPapers    
Economics at your fingertips  
 

Entropy and ionic conductivity

Yong-Jun Zhang

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 19, 4470-4475

Abstract: It is known that the ionic conductivity can be obtained by using the diffusion constant and the Einstein relation. We derive it here by extracting it from the steady electric current which we calculate in three ways, using statistics analysis, an entropy method, and an entropy production approach.

Keywords: Ionic conductivity; Fluctuation; Entropy; Entropy production (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112003354
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:19:p:4470-4475

DOI: 10.1016/j.physa.2012.04.021

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:19:p:4470-4475