The level crossing and inverse statistic analysis of German stock market index (DAX) and daily oil price time series
F. Shayeganfar,
M. Hölling,
J. Peinke and
M. Reza Rahimi Tabar
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 1, 209-216
Abstract:
The level crossing and inverse statistics analysis of DAX and oil price time series are given. We determine the average frequency of positive-slope crossings, να+, where Tα=1/να+ is the average waiting time for observing the level α again. We estimate the probability P(K,α), which provides us the probability of observing K times of the level α with positive slope, in time scale Tα. For analyzed time series, we found that maximum K is about ≈6. We show that by using the level crossing analysis one can estimate how the DAX and oil time series will develop. We carry out the same analysis for the increments of DAX and oil price log-returns (which is known as inverse statistics), and provide the distribution of waiting times to observe some level for the increments.
Keywords: Level crossing; Probability; Inverse statistics; Waiting time (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111005863
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:1:p:209-216
DOI: 10.1016/j.physa.2011.07.037
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().