A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation
Vadzim Yermakou and
Sauro Succi
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 20, 4557-4563
Abstract:
Based on the well-known mapping between the Burgers equation with noise and the Kardar–Parisi–Zhang (KPZ) equation for fluctuating interfaces, we develop a fluctuating lattice Boltzmann (LB) scheme for growth phenomena, as described by the KPZ formalism. A very simple LB-KPZ scheme is demonstrated in 1+1 spacetime dimensions, and is shown to reproduce the scaling exponents characterizing the growth of one-dimensional fluctuating interfaces.
Keywords: Fluctuating interfaces; Lattice Boltzmann fluids; KPZ equation; Growth phenomena; Burgers fluids (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112003858
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:20:p:4557-4563
DOI: 10.1016/j.physa.2012.05.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().