EconPapers    
Economics at your fingertips  
 

Arbitrary truncated Levy flight: Asymmetrical truncation and high-order correlations

Dmitry V. Vinogradov

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5584-5597

Abstract: The generalized correlation approach, which has been successfully used in statistical radio physics to describe non-Gaussian random processes, is proposed to describe stochastic financial processes. The generalized correlation approach has been used to describe a non-Gaussian random walk with independent, identically distributed increments in the general case, and high-order correlations have been investigated. The cumulants of an asymmetrically truncated Levy distribution have been found. The behaviors of asymmetrically truncated Levy flight, as a particular case of a random walk, are considered. It is shown that, in the Levy regime, high-order correlations between values of asymmetrically truncated Levy flight exist. The source of high-order correlations is the non-Gaussianity of the increments: the increment skewness generates threefold correlation, and the increment kurtosis generates fourfold correlation.

Keywords: Financial stochastic processes; Truncated Levy flights; High-order correlations; Non-Gaussian random walk (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005262
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5584-5597

DOI: 10.1016/j.physa.2012.06.022

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5584-5597