EconPapers    
Economics at your fingertips  
 

Majority-vote model with a bimodal distribution of noises

André L.M. Vilela, F.G.B. Moreira and Adauto J.F. de Souza

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 24, 6456-6462

Abstract: We consider the majority-vote dynamics where the noise parameter, associated with each spin on a two-dimensional square lattice, is a bimodally distributed random variable defined as q with probability (1−f) or zero with probability f, where 0≤f≤1 is the proportion of noiseless sites. We use Monte Carlo simulations and finite size scaling theory to characterize the ordered and disordered phases and study the phase transition of the model. We conclude that in the thermodynamic limit, the value of the critical noise below which there exists an ordered phase increases with f, the fraction of sites with zero noise. The calculation of the critical exponents shows that the introduction of disorder in the noise parameter does not alter the Ising critical behavior of the model system.

Keywords: Sociophysics; Phase transition; Monte Carlo simulation; Finite-size scaling (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112007595
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:24:p:6456-6462

DOI: 10.1016/j.physa.2012.07.068

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6456-6462