EconPapers    
Economics at your fingertips  
 

A theorem allowing the derivation of deterministic evolution equations from stochastic evolution equations. III The Markovian–non-Markovian mix

G. Costanza

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 6, 2167-2181

Abstract: The proof of a theorem that allows one to construct deterministic evolution equations from a set, with two subsets, containing two types of discrete stochastic evolution equation is developed. One subset evolves Markovianly and the other non-Markovianly. As an illustrative example, the deterministic evolution equations of quantum electrodynamics are derived from two sets of Markovian and non-Markovian stochastic evolution equations, of different type, after an average over realization, using the theorem. This example shows that deterministic differential equations that contain both first-order and second-order time derivatives can be derived after a Taylor series expansion of the dynamical variables. It is shown that the derivation of such deterministic differential equations can be done by solving a set of linear equations. Two explicit examples, the first containing updating rules that depend on one previous time step and the second containing updating rules that depend on two previous time steps, are given in detail in order to show step by step the linear transformations that allow one to obtain the deterministic differential equations.

Keywords: Evolution equations; Stochastic processes (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111008909
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:6:p:2167-2181

DOI: 10.1016/j.physa.2011.11.055

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:6:p:2167-2181